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Abstract 
 
Little guidance and few methods are available to refine 

a set of software requirements into an architecture satis-
fying those requirements. Part of the challenge stems 
from the fact that requirements and architectures lever-
age different terms and concepts to capture the artifacts 
relevant to each. In this paper we will present CBSP, a 
lightweight approach intended to provide a systematic 
way of reconciling requirements and architectures. CBSP 
leverages a simple set of architectural concepts (compo-
nents, connectors, overall systems, and their properties) 
to recast the requirements in a way that facilitates their 
straightforward mapping to architectures. Furthermore, 
the approach allows us to capture and maintain arbitrar-
ily complex relationships between requirements and ar-
chitectural artifacts, as well as across different CBSP 
artifacts. We have extensively applied CBSP within the 
context of particular requirements and architecture defi-
nition techniques, EasyWinWin and C2. We leverage that 
experience in this paper to demonstrate the CBSP method 
and tool support using a large-scale example that high-
lights the transition from an EasyWinWin requirements 
negotiation into a C2-style architectural model.  

 

1 Introduction 

Software systems of today are characterized by in-
creasing size, complexity, distribution, heterogeneity, and 
lifespan. They demand careful capture and modeling of 
requirements [20][24] and architectural designs [23][25] 
early on, before the low-level system details begin to 
dominate the engineers’ attention and significant re-
sources are expended for system construction. Under-
standing and supporting the interaction between software 
requirements and architectures remains one of the chal-
lenging problems in software engineering research [20]. 
Evolving and elaborating system requirements into a vi-
able software architecture satisfying those requirements is 
still a difficult task, mainly based on intuition. Little guid-

ance is available for modeling and understanding the im-
pact of architectural choices on the requirements. Soft-
ware engineers face some critical challenges when trying 
to reconcile requirements and architectures: 

 
• Requirements are frequently captured informally in a 

natural language. On the other hand, entities in a soft-
ware architecture specification are usually specified in 
a formal manner [17]. 

• System properties described in non-functional re-
quirements are commonly hard to specify in an archi-
tectural model [17]. 

• Iterative, concurrent evolution of requirements and 
architectures demands that the development of an ar-
chitecture be based on incomplete requirements. Also, 
certain requirements can only be understood after 
modeling and even partially implementing the system 
architecture [7][21]. 

• Mapping requirements into architectures and maintain-
ing the consistency and traceability between the two is 
complicated since a single requirement may address 
multiple architectural concerns and a single architec-
tural element may have numerous non-trivial relations 
to various requirements.  

• Real-world, large-scale systems have to satisfy hun-
dreds, possibly thousands of requirements. It is diffi-
cult to identify and refine the architecturally relevant 
information contained in the requirements due to this 
scale. 

• Requirements and the software architecture emerge in 
a process involving heterogeneous stakeholders with 
conflicting goals, expectations, and terminology [3]. 
Supporting the different stakeholders demands finding 
the right balance across these divergent interests [13]. 
 
To address these challenges we have developed a 

lightweight method to identify the key architectural ele-
ments and the dependencies among those elements, based 
on the stated system requirements. The CBSP (Compo-
nent-Bus-System-Property) approach helps to refine a set 
of requirements into an architecture by applying a taxon-



 

omy of architectural dimensions. In this iterative process 
CBSP provides a requirements to architecture model con-
nector that helps to concurrently evolve requirements and 
architecture models [21]. Input to the method is a set of 
typically incomplete and often quite general requirements 
captured as textual descriptions, possibly containing 
rationale. The result of CBSP is an intermediate model 
that captures architectural decisions in an incomplete draft 
architecture; this model guides the selection of a suitable 
architectural style to be used as a basis for converting the 
draft architectures into an actual implementation of a 
software system architecture.  

The intent of our work is to provide a generic approach 
that would work with arbitrary informal or semi-formal 
requirements elicitation and architecture modeling ap-
proaches. In order to validate our research to date, how-
ever, we have applied it extensively in the context of 
EasyWinWin [4][12][13][27], a groupware-supported 
requirements negotiation approach, and C2 [16], an archi-
tectural style for highly distributed systems. Our approach 
provides: 
• a lightweight way of converting requirements into an 

architecture using a small set of key architectural con-
cepts; 

• mechanisms for “pruning” the number of relevant re-
quirements, rendering the technique scalable; 

• involvement of key system stakeholders, allowing non-
technical personnel (e.g., customers, managers, even 
users) to influence the system’s architecture if desired; 
and 

• adjustable voting mechanisms to resolve conflicts. 
Together, these benefits afford a high degree of control 

over refining large-scale system requirements into archi-
tectures. 

The paper is organized as follows: Section 2 discusses 
the details of the CBSP approach. Section 3 describes the 
application of CBSP to a large-scale example problem. 
Section 4 describes our current tool support. Related work 
is discussed in Section 5. Conclusions round out the paper 
in Section 6. 

2 The CBSP Approach 

The relationship between a set of requirements and an 
effective architecture for a desired system is not readily 
obvious. Requirements largely describe aspects of the 
problem to be solved and constraints on the solution. Re-
quirements are derived from the concepts and relation-
ships in the problem domain (e.g., medical informatics, E-
commerce, avionics, mobile robotics). They reflect the, 
sometimes conflicting, interests of a given system’s 
stakeholders (customers, users, managers, developers). 
Requirements deal with concepts such as goals, options, 
agreements, issues, conditions [3], and, above all, desired 

system features and properties (both functional and non-
functional). Requirements may be simple or complex, 
precise or ambiguous, stated concisely or carefully elabo-
rated. Of particular interest to our work is a large class of 
requirements that is predominantly stated in a natural lan-
guage such as English, as opposed to precise formalisms. 
On the surface, such requirements are easier to understand 
by humans, but they frequently lead to ambiguity, incom-
pleteness, and inconsistencies. 

On the other hand, architectures model a solution to 
the problem described in the requirements. Software ar-
chitectures provide high-level abstractions for represent-
ing the structure, behavior, and key properties of a soft-
ware system. The terminology and concepts used to de-
scribe architectures differ from those used for the re-
quirements. An architecture deals with components, 
which are the computational and data elements in a soft-
ware system [23]. The interactions among components are 
captured within explicit software connectors (or buses) 
[25]. Components and connectors are composed into spe-
cific software system topologies. Finally, architectures 
both capture and reflect the key desired properties of the 
system under construction (e.g., reliability, performance, 
cost) [25]. These elements of software architectures are 
typically specified formally using architecture description 
languages, or ADLs [17]. 

The above-described differences between requirements 
and architectures make it difficult to build a bridge that 
spans the two. For example, it is unclear in general 
whether and how a statement of stakeholder goals should 
affect the desired system’s architecture; similarly, decid-
ing how to most effectively address a functional require-
ment often boils down to relying on the architects’ intui-
tion, rather than applying a well-understood methodology. 
For these reasons, we have formulated CBSP, a technique 
for relating requirements and architectural models. This 
technique supports the development of an architecture 
addressing a given set of requirements in a more straight-
forward and consistent manner. This section will intro-
duce the CBSP taxonomy of architectural dimensions and 
describe a process that guides the application of the tax-
onomy. 

2.1 CBSP taxonomy 

The fundamental idea behind CBSP is that any soft-
ware requirement may explicitly or implicitly contain in-
formation relevant to the software system’s architecture. 
It is frequently very hard to surface this information, as 
different stakeholders will perceive the same requirement 
in very different ways [13]. At the same time, this infor-
mation is often essential, in order to properly understand 
and satisfy requirements. CBSP supports the task of iden-
tifying and elaborating this information. The CBSP di-
mensions include a set of general architectural concerns 



 

that can be applied to systematically classify and refine 
requirements artifacts (e.g., specific goals, concerns, op-
tions, and so on) and to capture architectural tradeoff is-
sues and options (e.g., impact of connector throughput on 
the scalability of the topology).  

Each requirement is assessed for its relevance to the 
system architecture’s components, connectors (buses), 
topology of the system or a particular subsystem, and 
their properties. Thus, each CBSP artifact explicates an 
architectural concern and represents an early architectural 
decision for the system. For example, a requirement such 
as  

R: The system should provide an interface to a Web 
browser. 

can be recast into a processing component and a bus 
CBSP artifact 

Cp: A Web browser should be used as a component in 
the system. 

B: A connector should be provided to ensure interop-
erability with third-party components. 
It is important to emphasize that, while CBSP supports 

recasting requirements into more architecturally 
“friendly” artifacts along well-defined dimensions, it does 
not prescribe a particular transformation of a requirement. 
Instead, our intent is to give a software architect sufficient 
leeway in selecting the most appropriate refinement or, at 
times, generalization of one or more requirements. Ex-
amples of both refinement and generalization are given 
below. 

There are six possible CBSP dimensions discussed be-
low and illustrated with a simple example from a spread-
sheet manipulation application. The six dimensions in-
volve the basic architectural constructs [17] and, at the 
same time, reflect the simplicity of the CBSP approach. 
1. C are artifacts that describe or involve an individual 

Component in an architecture. For example 

R: Allow user to directly manipulate spreadsheet 
data. 
may be refined into CBSP artifacts describing both 

processing components (Cp) and data components(Cd) 
Cp: Spreadsheet manipulation UI component. 
Cd: Data for spreadsheet. 

2. B are artifacts that describe or imply a Bus (connec-
tor). For example 

R: Manipulated spreadsheet data must be stored on 
the file system. 
 may be refined into  

B: Connector enabling interaction between UI and file 
system components. 

3. S are artifacts that describe System-wide features or 
features pertinent to a large subset of the system’s 
components and connectors. For example 

R: The user should be able to select appropriate 
data filters and visualizations. 
may be refined into 

S: The system should employ a strict separation of 
data storage, processing, and visualization compo-
nents. 

4. CP are artifacts that describe or imply data or proc-
essing Component Properties. As discussed above, 
the properties in CBSP are the “ilities” in a software 
system, such as reliability, portability, incrementality, 
scalability, adaptability, and evolvability. For exam-
ple 

R: The user should be able to visualize the data re-
motely with minimal perceived latency. 
may be refined into 

CP: The data visualization component should be ef-
ficient, supporting incremental updates.  

5. BP are artifacts that describe or imply Bus Properties. 
For example 

R: Updates to system functionality should be en-
abled with minimal downtime. 
may be refined into 

BP: Robust connectors should be provided to facili-
tate runtime component addition and removal. 

6. SP are artifacts that describe or imply System (or 
subsystem) Properties. For example 

R: The spreadsheet data must be encrypted when 
dispatched across the network. 
may be transformed into 

SP: The system should be secure.  
Note that, e.g., the BP example (5.) involved refining a 

general requirement into a more specific CBSP artifact. 
On the other hand, the SP example (6.) involved the gen-
eralization of a specific requirement into a CBSP artifact. 

2.2 CBSP process 

In addition to the taxonomy of architectural dimen-
sions, we provide a step-by-step process and techniques 
supporting the synthesis of the CBSP model and the 
architecture in a collaborative manner. Figure 1 depicts 
process activities and deliverables. If used in an iterative 
process CBSP supports one iteration of evolving and re-
fining an architecture out of a given set of requirements. 
Each CBSP step is discussed in more detail below.  



 

 

 

Figure 1: CBSP process. 
Selection of next-level requirements. To reduce the 

complexity of addressing large numbers of requirements, 
a team of architects applies the CBSP taxonomy to the 
most essential set of requirements only in each iteration. 
In this activity we thus eliminate requirements considered 
unimportant or infeasible through collaborative prioritiza-
tion, thus arriving at a set of core requirements to be con-
sidered for the next level of refinement. 

Architectural classification of requirements. A team 
of architects classifies the selected requirements using the 
CBSP taxonomy. All requirements are assessed by the 
experts individually on their relevance to the CBSP di-
mensions using an ordinal scale (not-partially-largely-
fully). For instance, a requirement that is rated as partially 
relevant along the component (C) dimension implies that 
this requirement has some (partial) impact on one or more 
architectural components. As a result of this step, a profile 
showing the aggregated architectural relevance 
(C/B/S/CP/BP/SP) is available for each requirement.  

Identification and resolution of classification con-
flicts. If multiple architects independently perform an 
architectural classification of requirements using CBSP, 
their findings may diverge since they may perceive the 
same statement differently. Revealing the reasons for di-
verging opinions is an important means of identifying 
misunderstandings, ambiguous statements, tacit knowl-
edge, and conflicting perceptions [13]. The measured 
consensus among stakeholders is thus a proxy for their 
mutual understanding of a requirement’s meaning and 
their agreement on the architectural relevance of a re-

quirement. We determine the level of consensus through a 
statistical test, Kendall’s coefficient of concordance [26]. 

Table 1 depicts rules that indicate how to proceed in 
different situations: in case of consensus among stake-
holders, the requirements are either accepted or rejected 
based on the voted degree of architectural relevance. We 
accept requirement as architecturally relevant if at least 
one third of the stakeholders vote largely or fully. We 
reject requirements if no vote is higher than partially. If 
the stakeholders cannot agree on the relevance of a re-
quirement to the architecture, they further discuss it to 
reveal the reasons for the different opinions. This typi-
cally leads to a clarification of a requirement and eases 
the subsequent step of refining it into one or more archi-
tectural dimensions. 

Architectural refinement of requirements. In this 
activity the team rephrases and splits requirements that 
exhibit overlapping CBSP properties. Each requirement 
passing the consensus threshold (concordance and largely 
or fully relevant) may need to be refined or rephrased 
since it may be relevant to several architectural concerns. 
For instance, if a requirement is largely component rele-
vant, fully bus relevant, and largely bus property relevant, 
then splitting it up into several architectural decisions 
using CBSP will increase clarity and precision. 

During this process, a given CBSP artifact may appear 
multiple times as a by-product of different requirements. 
For example, the following two requirements result in the 
identification of a Cargo data component. 

R01: Support for different types of cargo. 
R09: Support cargo arrival and vehicle estimation. 

Such redundancies are identified and eliminated in the 
CBSP model. It is also possible to merge multiple related 
CBSP artifacts and converge on a single artifact.  

Derivation of architectural style and architecture. 
At this point, requirements should have been refined and 
rephrased into CBSP artifacts in such a manner that no 
stakeholder conflicts exist and all artifacts are at least 
largely relevant to one of the six CBSP dimensions. 
Based on simple CBSP artifacts, a draft-architecture can 
be derived. 

Architectural styles [1][16][23][25] provide rules that 
exploit recurring structural and interaction patterns across 
a class of applications and/or domains. Based on the de-
pendencies among the elements in the minimal CBSP 
view, the rules of the selected style allow us to compose 

Table 1: Concordance/Relevance Matrix.

Largely or Fully Partially or Not

Consensus Accept Reject

Conflict Discuss

Concordance

Relevance

 

Draft
Requirements

Selection of next-level requirements

Architectural classification 
of requirements

Identification and resolution 
of classification mismatches

Architectural refinement of requirements

Derivation of 
architectural style and architecture

Mismatches,
Ambiguities

CBSP model 

Draft Architecture 

Architectural
Relevance Profiles

Next-level
requirements



 

them into an architecture. In other words, we select the 
style based on (1) the characteristics of the application 
domain and (2) the desired properties of the system, iden-
tified in the requirements negotiation and elaborated dur-
ing the CBSP process. This can, of course, result in mul-
tiple candidate styles (or no obvious candidates). We 
choose the best candidate and, based on its rules and heu-
ristics, start converting the CBSP artifacts into compo-
nents, connectors, configurations, and data, with the de-
sired properties. 

3 A Step-By-Step Example 

This section illustrates the CBSP approach describing a 
concrete case study in which we applied the activities 
described above in the context of the EasyWinWin re-
quirements elicitation method and the C2 architectural 
style.  

Our example application is developed in collaboration 
with a major U.S. software development organization. It 
addresses a scenario in which a natural disaster results in 
extensive material destruction and casualties. In response 
to the situation, an international humanitarian relief effort 
is initiated, causing several challenges from a software 
engineering perspective. These challenges include effi-
cient routing and delivery of large amounts of material 
aid; wide distribution of participating personnel, equip-
ment, and infrastructure; rapid response to changing cir-
cumstances in the field; using existing software for tasks 
for which it was not intended; and enabling the interop-
eration of numerous, heterogeneous systems employed by 
the participating countries. In particular, our system 
(called Cargo Router) must handle the delivery of cargo 
from delivery ports (e.g., shipping docks or airports) to 
warehouses close to the distribution centers. Cargo is 
moved via vehicles (e.g., trucks and trains) selected based 
on terrain, weather, accessibility and other factors. Our 
system must also report and estimate cargo arrival times 
and vehicle status (e.g., idle, in use, under repair). The 
primarily responsibility of the system’s user is to initiate 
and monitor the routing of cargo through a simple GUI. 

We have performed a thorough requirements, architec-
ture, and design modeling exercise to evaluate CBSP in 
the context of the cargo router application. We used the 
EasyWinWin method to gather and negotiate require-
ments for the cargo router system. EasyWinWin is a 
groupware-supported methodology [4] based on the 
WinWin approach [3] that aims at enhancing the direct-
ness, extent, and frequency of stakeholder interaction. 
EasyWinWin adopts a set of COTS groupware compo-
nents (electronic brainstorming, categorizing, voting, etc.) 
developed at the University of Arizona and commercial-
ized by GroupSystems.com [11]. 

Three stakeholders participated in a 1-hour brainstorm-
ing session and gathered 81 statements (stakeholder win 

conditions) about their goals. In a first step, the team con-
verged on 64 requirements by reviewing and reconciling 
similar or redundant goals. For instance, one stakeholder 
asked to “track location of vehicles” whereas another 
asked for “the system [to] enable real-time status reports 
and updates on ports, warehouses, vehicles, and cargo.” 
Obviously, both stakeholders pursued similar goals and, 
thus, the two win conditions were merged (after verifying 
stakeholder consensus) into the more general requirement 
“real-time communication and awareness.”  

3.1 Selection of next-level requirements 

The 64 requirements became the initial baseline for the 
cargo router project and covered functional and non-
functional aspects, software process issues, and time and 
budget constraints of the system to be developed. To iden-
tify the set of requirements needed for a first draft archi-
tecture in the first iteration, we performed a joint prioriti-
zation of the 64 requirements and selected the 25 re-
quirements with the highest business importance and fea-
sibility. 

3.2 Architectural classification of requirements 

To extract and surface the architecturally relevant in-
formation from the pool of 25 core requirements, a voting 
process was initiated. Four architects classified each re-
quirement with respect to its architectural relevance along 
the six CBSP dimensions (C/B/S/CP/BP/SP). With four 
stakeholders involved, a total of 600 votes were cast. This 
classification process was carried out in less than one 
hour. 

For instance, the requirement “Support cargo arrival 
and vehicle availability estimation” was voted to be 
strongly component-relevant by all architects, whereas the 
requirement “the system must be operational within 18 
months” was not voted to be architecturally relevant.1 
Some requirements also received contradictory votes: the 
requirement “Automatic routing of vehicles” was voted 
component relevant (Cp and Cd) by all stakeholders, but 
only system property (SP) relevant by one stakeholder. At 
the same time, there was a high degree of consensus on 
other requirements. For example, since stakeholders voted 
the requirement “support cargo arrival and vehicle avail-
ability estimation” to be only component relevant (largely 
and fully ratings), this requirement was accepted as archi-
tecturally relevant without further discussions. 

                                                           
1 This does not mean that process and business aspects are, in general, 
unrelated to a system’s architecture. For example, a scheduling conflict 
may cause architecturally-relevant requirements to be dropped or re-
laxed.  



 

3.3 Identification and resolution of classifica-
tion mismatches 

Ambiguities in the requirements’ meanings led to sev-
eral conflicts when stakeholders contradicted one another 
in rating the architectural relevance of requirements. For 
instance, stakeholders disagreed on the system property 
(SP) relevance of the requirement “automatic routing of 
vehicles,” and cast ballots for not, partial, and full archi-
tectural relevance. The concordance matrix in Table 1 
suggests that in such a situation stakeholders need to dis-
cuss the mismatch. In this particular case, the discussion 
revealed different perceptions of what this requirement 
implied. One stakeholder thought this requirement im-
plied that the system needs to suggest paths that vehicles 
travel (e.g., via navigation points), but not their sources 
and targets. Another stakeholder thought this requirement 
would imply that the system would also need to suggest 
the sources and destinations for vehicles. The discussion 
clarified this conflict and an instant re-vote identified this 
requirement as indeed system property relevant. 

From the total of 150 decisions (25 requirements x 6 
categories) 43 decisions affecting 19 requirements turned 
out to be controversial and needed further attention. After 
all conflicts were resolved, 19 out of the original 25 re-
quirements remained in the pool of architecturally rele-
vant requirements. 

3.4 Architectural refinement of requirements 

Architecturally relevant requirements explicate at least 
one CBSP dimension. Some requirements address multi-

ple dimensions. For instance, the requirement “Match 
cargo needs with vehicle capabilities” was voted to be 
only processing component (Cp) relevant, whereas the 
requirement “Support cargo arrival and vehicle availabil-
ity estimation” was voted to be fully component relevant, 
fully system relevant, and largely bus relevant. As such, 
the latter requirement was much more comprehensive 
than the former. In fact, the latter requirement even de-
pended on the former. For instance, the need for special 
types of vehicles (e.g., to ship liquid substances) also has 
an impact on delivery time. In order to better relate such 
requirements, it is necessary to refine them into more 
atomic entities. For instance, the fact that cargo arrival 
estimation depends on vehicle capabilities does not imply 
that the former requirement fully depends on the latter. 

CBSP dimensions also play an important role in the 
requirements refinement process. For example, the re-
quirement “Match cargo needs with vehicle capabilities” 
was determined to be only component relevant. As such, 
the requirement was analyzed and refined into the proc-
essing component “Cargo/Vehicle Matcher.” This proc-
essing component requires as input cargo and vehicle 
information, resulting in its dependency on relevant data 
components (e.g., “Cargo weight”). Since some of those 
data components did not exist beforehand, they were also 
created. As a result, the refinement of this requirement 
produced two types of information: (1) CBSP artifacts 
(processing and components) describing architectural 
decisions and (2) links describing dependencies among 
those artifacts. The CBSP artifacts provide potential 
building blocks for the architecture, whereas the CBSP 
dependencies help to clarify potential control and data 

R09: Support Cargo Arrival and
Vehicle Availability Estimation R09_Cp: Cargo Arrival Estimator

R09_Cp: Vehicle Availability
Estimator

R09_1d: Cargo (weight, shape)

R09_Cd: Vehicle

R09_Cd: Location

R10: Automatic or Manual
Routing of Vehicles

R10_Cp: User Interface for
Vehicle Route Selection

R10_Cp: Vehicle Route Selector

R10_CP: Level of Automation of
Vehicle Route Selector

R01: Support for Different Types
of Cargo

R10_Cd: Warehouse

R10_Cd: Route

R22: Match Cargo Needs with
Vehicle Capabilities R22_Cp: Cargo/Vehicle Matcher R22_Cd: Vehicle Cargo Shape

R22_Cd: Vehicle Cargo Weight

R10_B: Comm-Link to Vehicle

CargoRouter

Estimator

VehicleWarehouse

ServicesConn

ArtistConn

Artist

Clock

ClockConn

Reporter

CommunicationConn

Port

Architecture-Relevant
Requirements

CBSP Artifacts and Dependencies as Created During Refinement Potential C2 Architectural
Realization

Creating an architecture out of CBSP artifacts
often requires artifact grouping. Bold elements
below are derived out of the subset of the
cargo router CBSP artifacts, shown on the left.
For instance, the user interface for route
selection is not the only user interface that
needs to be supported (but the only one
depicted). Bold elements below are elements
that can be derived out of the given CBSP
artifacts on the left (note only subset depicted).

Figure 2: Sample Artifact Relationships in Cargo Router Example. 



 

dependencies within the architecture (which ultimately 
help architects to find a suitable architectural style). 

The refinement process of a more complex require-
ment is similar but more elaborate. For instance, as dis-
cussed above, the requirement “support cargo arrival and 
vehicle availability estimation” was determined to be C, 
B, and S relevant. At a high level, this requirement sup-
ports two processing components: “Cargo arrival estima-
tor” and “Vehicle availability estimator.” Cargo arrival 
estimator depends on data components representing 
“Cargo”, the “Vehicle” carrying the cargo, and the “Loca-
tion” of the vehicle. Vehicle availability estimator only 
depends on the knowledge about the vehicle and its loca-
tion (but not cargo). The above requirement was also 
rated bus-relevant. This was the case because the location 
of a vehicle (and its cargo) is variable as it moves. A con-
nector (bus) is therefore needed to allow the system to 
track vehicles (recall requirement “real-time communica-
tion and awareness”). 

In our experience to date, only component, bus, and 
system artifacts are seen as candidates for refinement. 
Properties (CP, BP, SP) are harder to refine since they 
tend to span large parts of a system. An example is the 
requirement “The system should support 30 operators, 15 
incoming ports, and 50 warehouses,” which was voted 
system property relevant. From the 25 core requirements, 
10 were rated property relevant, while the remaining 15 
requirements were refined into CBSP artifacts (e.g., “Ve-
hicle”). In total, 48 CBSP artifacts were created. 

Figure 2 shows an excerpt of the CBSP refinement 
process. The left two columns of the picture depict the 
refinement of four requirements into CBSP artifacts. As 
an example, the figure depicts the requirement “Support 
for different types of cargo” and shows that it was refined 
into in a simple data component called Cargo. The re-
quirement “Support cargo arrival and vehicle availability 
estimation” was more complex and was broken up into 
several artifacts including two processing components and 
a bus component. The figure shows that those artifacts 
were additionally refined via sub-elements (e.g., vehicle) 
and dependencies. This additional refinement is not nec-
essary, but can result in useful insights into overall system 
interdependencies. For instance, we learn that the cargo 
component is also needed by other requirements, making 
Cargo a centerpiece of the system. Should we later want 
to remove cargo descriptions from the system, the exist-
ing dependencies would also allow us to reason about the 
impact of this removal on other parts of the architecture 
and the corresponding requirements. In the context of 
CBSP, refined artifacts can be merged together resulting 
in less duplication, but more CBSP artifact dependencies. 
As stakeholders in our case study refined all requirements 

into CBSP artifacts, they identified 27 CBSP artifacts 
across the architecturally relevant requirements. 

3.5 Derivation of Architectural Style and Ar-
chitecture 

CBSP artifacts and their dependencies are valuable for 
architecture and requirements trade-off analyses. They are 
also useful in creating and modifying architectural repre-
sentations. For instance, we can see that the estimator 
components depend on vehicle information, indicating a 
potential relationship in the architecture. Figure 2 (right 
column) also shows the refinement of the CBSP artifacts 
into an architectural realization using the C2 architectural 
style. Creating an architecture out of CBSP artifacts often 
requires artifact grouping. Bold elements in Figure 2 are 
derived out of the subset of the cargo router CBSP arti-
facts, shown on the left. We find the Estimator compo-
nent placed underneath the Vehicle component in the C2 
architecture. Recall that C2 topologically requires service-
providing components to be put above service-requiring 
components. The CBSP artifacts (middle column in Fig-
ure 2) are either directly represented in C2 or are grouped 
together into C2 elements (e.g., vehicle data components, 
estimator processing components). The only CBSP arti-
fact not represented in C2 is cargo, which is defined using 
C2’s ADL [16] (not depicted here). The bold items in the 
C2 architecture in Figure 2 were derived from the de-
picted CBSP refinement. The remaining items are be de-
rived from other requirements, which have been elided for 
brevity.  

The example in Figure 2 shows one refinement into a 
C2-style architecture. Naturally, there could be other re-
alizations of the same requirements (in C2 or another ar-
chitectural style). 

4 Tool Support  

Our ultimate goal is to provide tool support for each 
activity in the CBSP process depicted in Figure 1. This 
section discusses tools we have devised to date for the 
CBSP method and techniques. To speed up tool develop-
ment we have adopted off-the-shelf components from 
GroupSystems.com’s groupware infrastructure. Further-
more, we have developed a bridge to the Rational Rose 
repository to ease transition of requirements into architec-
ture and allow integration of this work with our existing 
requirements [12], architecture [16], and design [8] tools.  

Selection of next-level requirements. This activity is 
supported as part of the EasyWinWin methodology. 
Stakeholders use a distributed voting tool to assess re-
quirements for their business importance and feasibil-
ity [12]. 



 

Architectural classification of requirements. We 
customized a voting tool to support the CBSP taxomony. 
The CBSP dimensions are assessed in a voting process 
involving multiple experts. Figure 3 depicts voting results 
(architectural relevance profiles) showing win conditions 
as not relevant (No), and partially (Pa), largely (La), or 
fully (Fu) relevant. 

Identify and resolve classification conflicts. We also 
provide tool support for identifying and resolving classifi-
cation mismatches. This is achieved by highlighting con-
flicting opinions and perceptions. Different cell colors 
indicate the level of consensus among the experts. Con-
sensus is indicated with green (light gray in Figure 3), 
while disagreement is indicated with red (dark gray in 
Figure 3). The vote spread can be displayed (small win-
dow in Figure 3) to trigger discussions about differences 
in opinion.  

Architectural refinement of requirements. A proto-
type interface to the Rational Rose modeling tool is pro-
vided to support repository-based integration and refine-
ment of requirements artifacts. The integration from 
GroupSystems to Rose allows translating WinWin nego-
tiation results and CBSP artifacts into a UML representa-
tion. UML stereotypes are used to extend the modeling 
capabilities and enable artifact types such as win condi-
tion, bus property, component, and so on. The Rational 
Rose repository helps in avoiding and eliminating dupli-
cate items. 

Derivation of Architectural Style and Architecture. 
Although our architectural modeling and analysis tool, 
DRADEL [16] has been integrated with Rational Rose, 
we currently do not provide tool support for recommend-
ing architectural styles. CBSP artifacts and dependencies 
do constrain the architectural space in a manner that po-
tentially supports this kind of reasoning. We intend to 
address this area in our future work. 

5 Related Work 

The work described in this paper is related to several 
areas of research covering requirements, architecture, and 
model transformation.  

To date, we have applied CBSP in the context of the 
WinWin requirements negotiation approach. WinWin is 
related to other techniques that focus on capturing and 
evolving stakeholder goals and interests into requirements 
[6][7][14][18][24]. We believe that CBSP would also 
work with these approaches. 

Refining requirements into architectures is also dis-
cussed in the context of processes for requirements cap-
ture (e.g., [24]). Our work on refining requirements com-
plements such processes with a structured transformation 
technique and tool support. However, other approaches 
that enable automated refinement of requirements (e.g., 
[19]) are predicated on a more formal treatment of re-
quirements artifacts than a technique such as WinWin 
would allow.  

A key issue in transforming requirements into architec-
ture and further software artifacts is traceability. Re-
searchers have recognized the difficulties in capturing 
development decisions across modeling artifacts [9]. 
Gotel and Finkelstein [10] suggest a formal approach for 
ensuring the traceability of requirements during develop-
ment. Our approach captures extensive traces thus satisfy-
ing many of the needs identified in [9] [10]. 

Within the area of software architectures, two concepts 
provide guidance for architects in converting system re-
quirements into effective architectures. The first is archi-
tectural styles [25], which captures recurring structural, 
behavioral, and interaction patterns across applications 
that are in some way related and/or similar. As discussed 
above, we indeed make extensive use of architectural 
styles in formulating an architecture from a collection of 
CBSP artifacts. The drawback of our current approach is 
that styles are typically collections of design heuristics, 

 
Figure 3: CBSP Classification and Conflict Detection. 



 

requiring extensive human involvement and adding a de-
gree of unpredictability to the task of transforming CBSP 
artifacts into architectures. The second related concept is 
domain-specific software architecture (DSSA) [28]. A 
DSSA captures a model of the (well understood) applica-
tion domain, together with a set of recurring requirements 
(called reference requirements) and a generic architecture 
(called reference architecture) common to all applications 
within the domain. While these DSSA artifacts would 
make the task of arriving at an architecture from CBSP 
artifacts even simpler than by leveraging styles, CBSP 
does not require the existence of a DSSA, nor is it re-
stricted only to extensively studied application domains.  

Several approaches have been proposed to ease bridg-
ing requirements and architectures. The ATAM tech-
nique [14] supports the evaluation of architectures and 
architectural decision alternatives in light of quality at-
tribute requirements. Nuseibeh [21] describes a twin 
peaks model that aims at overcoming the often artificial 
separation of requirements specification and design by 
intertwining these activities in the software development 
process. Brandozzi and Perry [5] use the term architecture 
prescription language for their extension of the KAOS 
requirements specification language towards architectural 
dimensions. 

Finally, CBSP also relates to the field of transforma-
tional programming [2][15][22]. The main differences 
between transformational programming and CBSP are in 
their degrees of automation and scale. Transformational 
programming strives for full automation, though its appli-
cability has been demonstrated primarily on small, well-
defined problems [22]. CBSP, on the other hand, can be 
characterized only as semi-automated; however, we have 
applied it on larger problems and a more heterogeneous 
set of models, representative of real development situa-
tions. 

6 Conclusions and Further Work 

We have introduced the CBSP (Component, Bus, Sys-
tem, Property) approach that aims at reconciling software 
requirements and architectures. We believe that, although 
a deliberately simple and lightweight approach, CBSP 
assists in coping with the challenges discussed in the in-
troduction: 

 
• Bridging different levels of formality: CBSP provides 

an intermediate model reducing the semantic gap be-
tween high-level requirements and architectural de-
scriptions.  

• Modeling non-functional requirements: CBSP allows 
to identify and isolate ‘ilities’ in requirements at the 
system level (SP) and architectural-element level (CP, 
BP), thus improving modeling of non-functional prop-
erties.  

• Maintaining evolutionary consistency: The intermedi-
ate model between requirements and architecture pro-
duced by CBSP allows specifying more meaningful 
dependency links that improve evolutionary consis-
tency.  

• Incomplete models and iterative development: CBSP 
does not mandate that the requirements be complete. 
CBSP also allows architects to maintain arbitrarily 
complex dependencies between a system’s require-
ments and its architecture, thus easing iterations be-
tween the two. 

• Handling scale and complexity: CBSP focuses only on 
the most essential subset of requirements in each itera-
tion and, further, on the subset of those requirements 
describing architecturally relevant properties. In fact, 
each activity in the CBSP process results in filtering 
out requirements or merging multiple requirements 
into one. Voting is an important mechanism for reduc-
ing complexity by increasing focus and allowing to 
better understand different stakeholder perceptions. 

• Involving heterogeneous stakeholders: The semiformal 
CBSP representation and intuitive tools allow the in-
volvement of success-critical stakeholders in all stages 
of the process.  
 
In our future work we intend to extend CBSP in the 

following directions: 
 

• Although demonstrated in the context of EasyWinWin 
and C2, we believe that CBSP has potential for wide 
applicability and provides a generic framework of 
bridging requirements into architecture and design 
(e.g., UML). Further validation is needed by exploring 
CBSP using additional requirements and architecture 
methods. 

• Another direction is to devise an approach analyzing 
the architectural constraints captured as CBSP arti-
facts/dependencies and recommending architectural 
styles for a given CBSP model. In particular, the prop-
erties described in a CBSP model (e.g., component and 
bus properties, system wide properties) facilitate the 
identification of a proper architectural style for a given 
problem. 

• We are also aiming at improving the method to better 
support capturing feedback from architecture modeling 
to requirements negotiations, i.e., how findings from 
architectural modeling, simulation, etc. can be captured 
as CBSP artifacts (e.g., bus property issue, system 
property issue, component option, etc.). 

• We are interested in extending ADLs (e.g., C2) to bet-
ter support modeling of properties captured as granular 
CBSP artifacts. 
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